
Solving 1D Abstraction and Reasoning Corpus
using Reinforcement Learning

Liyew Woletemaryam (20231210)
GIST

woleteml@gm.gist.ac.kr

Marha Midhatiey (20231211)
GIST

marhamidhatiey@gm.gist.ac.kr

Abstract—This study aims to devise a new approach of
prediction and classification of given datasets using rule-based
representation learning and Reinforcement Learning technique
(DQN). Incorporating rule-based representation learning pro-
vides an alternative technique that uses mathematical and log-
ical reasoning to identify links between inputs and outputs.
For evaluating our model, the 1 dimensional abstraction and
reasoning corpus (1D ARC) dataset has been used. Our paper
demonstrates the performance of our model by evaluating its
accuracy on unseen, complex, combined rules data. Our findings
highlight the importance of rule-based representation learning
in understanding the complicated patterns hidden in 1D arc
datasets. The results shows that our model converge faster
by decreasing the total loss and increased the rewards which
stabilizes as training moves, indicating effective learning and
improved prediction accuracy. By bridging the gap between
theoretical discoveries and practical implementations, this study
not only contributes to the developing field of categorization, but
also provides the framework for future advances in data analysis
approaches.

Index Terms—Reinforcement Learning, DQN, Abstraction and
Reasoning Corpus (ARC), Rule based Representation, Mathe-
matical and Analogical Reasoning

I. INTRODUCTION

In recent years, advancements in artificial intelligence (AI)
have been significantly driven by the integration of logical and
understandable techniques. The Abstraction and Reasoning
Corpus (ARC), developed [1] by François Chollet, serves as an
important benchmark for comparing the intelligence between
human and machine learning. To that purpose, he draws on
the work of developmental psychologists Spelke and Kinzler
(2007) on the theory of Core Knowledge to identify axes along
which human-like intelligence could be evaluated. ARC tasks,
which consist of 1000 image-based reasoning activities, assess
abstract reasoning ability using concepts such as objects, goal
states, counting, and basic geometry [2]. However, classic
ARC tasks have presented substantial hurdles for AI models,
with many techniques failing to reach good performance.
A recent study of GPT-4 on ARC’s two-dimensional input-
output grids revealed minimal success, with just 13 out of 50
fundamental tasks resolved. This limitation was associated to
the sequential nature of the text encodings used to represent
objects in 2D ARC tasks. However, performance improved

Identify applicable funding agency here. If none, delete this.

with a new benchmark consisting of one-dimensional array-
like tasks (1D ARC), in which object-based representations
significantly enhanced reasoning abilities. Despite numerous
attempts to solve ARC since its start in 2019, numerous mea-
sures, including a recent GPT-4, achieved limited results [7].
This project suggests a novel way to address the ARC tasks
challenges by merging Reinforcement Learning technique
(DQN) with Rule-based Representation. Specifically, ARC
requires one to find a technique consistent with a small number
of certain input-output examples, with 2-5 input-output image
pairings provided as training examples to learn the underlying
technique and apply it to a new input to generate new output
(unseen tasks) (see Figure 1). By implementing rules as
(action), it would be able to find the best rules within the
input output pairs provided and DQN to increase reasoning
and problem-solving abilities.

Fig. 1: Sample ARC Tasks. Two tasks (separated by square box) are
shown. The goal is to deduce the new unseen output from the given
examples.

II. RULES REPRESENTATION LEARNING

A. Rule-Based Representation
The purpose of this rule-based system is to process input

data with specified rules and compare the results to expected
outcomes. The design and implementation of this rule-based
system is by reading input and output pairs data from CSV
files, defining logical rules and applying the rules to generate
new unseen tasks, and validating the outputs. RBL method
intends to automate the process of data transformation and
validation in order to handle data more efficiently.

B. Defining Rules
To formulate the rules, an analysis of the input and output

pairs were conducted to develop mathematical and logical

formulas that defined how they connected within one another.
Total of 12 rules were defined with explanation on how it
works :

• FLIP: Detection and Generation of Flipped Sequences
• HOLLOW: Create spaces between same colour pixels
• FILL: Filling Gaps
• MIRROR: Mirroring Elements Around a Central Point
• DENOISING: Removing of Non-Continuous Elements
• MOVE: Shifting Elements
• SCALE DP: Scaling Down and Propagating Values
• PADDED FILL: Padded Filling of Sequences
• RECOLOR OE: Recoloring Odd and Even Length Se-

quences
• RECOLOR CMP: Recoloring Based on Complementary

Patterns
• PCOPY: Moving Even Numbers and Zero-Filling
• MOVE DP: Moving Elements by Double Positions

C. Result Generation
Function Explanation : FLIP

• The Flip function is intended to reverse only the color
pixels in a one-dimensional array (Example shown as in
Fig. 1).

• Initial Check and Copy: The function starts by learning
the input-output pairs and filtering out the non-zero
elements from both input array and output array using
list comprehensions.

• Variable Initialization: The filtered lists non-zero input
and non-zero output are the variables that will be used
for comparison.

• Check Reversed Order: The function then checks if the
non-zero input list, when reversed, matches the non-zero
output list.

• New Output Generated: Looping through arrays to check
conditions and apply the rules, perform comparisons, and
generate new outputs from the given input.

III. DQN ARCHITECTURE

Our approach uses a Deep Q-Network (DQN) architecture
to train the RL agent.The DQN algorithm initializes a neural
network to approximate the Q-values for state-action pairs,
facilitating decision-making. It uses experience replay to store
and randomly sample experiences, improving learning stability
and efficiency. During training, it iteratively selects actions
based on an epsilon-greedy policy, balancing exploration and
exploitation [5]. The network is updated using the Bellman
equation to minimize the mean squared error between pre-
dicted and target Q-values. This process is repeated over
multiple episodes to learn optimal rules for transforming input
arrays into their desired output forms.

Fig. 2: DQN Architecture used for solving ARC tasks

A. Neural Network and Rule Definitions

In the initial part of the project, we defined the neural
network architecture for the Deep Q-Network (DQN). The
neural network, named QNetwork, consists of three fully
connected layers. The first two layers use ReLU activation
functions to introduce non-linearity, enabling the network to
learn complex patterns from the input data. The input layer
accepts the state size, which is the length of the input array
(32 in our case), and the output layer provides Q-values
for each possible action, corresponding to the defined rules.
The network architecture is simple yet effective for this task,
ensuring quick convergence and accurate predictions.

In addition to defining the neural network, we also specified
the rules that the DQN would learn to apply to the input ar-
rays. Three rules were defined: move_dp, denoising_1c,
and move_1p. These rules perform different transforma-
tions on the input array. For instance, movedp shifts all
non-zero elements to the right while preserving their order,
denoising_1c removes isolated non-zero elements sur-
rounded by zeros, and move1p shifts elements one position to
the right. These rules form the action space for the DQN, and
the network learns to select the appropriate rule to transform
the input array to match the target output.

B. Hyperparameters and Training Setup

• In the second part, we focused on setting up the hy-
perparameters and the training process for the DQN.
Key hyperparameters include the learning rate (alpha),
discount factor (gamma), exploration rate (epsilon),
and its decay rate, among others. These parameters
control the learning dynamics of the network, such as
how much the network updates its weights in response
to new data, the importance of future rewards, and the
balance between exploring new actions and exploiting
known ones [6]. The experience replay mechanism was
also introduced, where past experiences are stored in
a d-queue and sampled randomly to train the network,
preventing over-fitting and ensuring stable learning.

• We also defined the reward function based on the Mean
Absolute Error (MAE) between the transformed array and
the expected output. This reward function guides the net-
work in learning by providing feedback on the accuracy
of its predictions. A negative MAE value was used as the
reward to incentivize the network to minimize the error.
The training process involves multiple episodes, where
the network iteratively applies actions to the input array,
stores the experiences, and updates the network weights
using the sampled experiences. This setup ensures that the
network gradually improves its performance and learns to
apply the correct rules for various input configurations.

C. DQN Training and Application

The final part of the project involved the actual training of
the DQN and its application to new data. We defined a training
function, SQN training, which loops through a predefined
number of episodes and steps within each episode. During

each step, the network selects an action based on an epsilon-
greedy policy, applies the corresponding rule, calculates the
reward, and stores the experience. The network is then trained
using these experiences, updating its weights to better predict
the Q-values for future actions. The epsilon value decays
over time, reducing the exploration rate and encouraging the
network to exploit learned knowledge. After training the DQN
on the example datasets, we tested its performance on a
hidden test input to evaluate its generalization capabilities.
The function apply best rules was used to apply the best rules
learned by the network to the new input array, transforming
it to match the expected output. This step demonstrated the
network’s ability to generalize the learned transformations and
apply them effectively to unseen data, validating the success of
the training process. The transformed hidden test input showed
that the DQN could accurately apply the appropriate rules,
indicating the potential for broader applications in similar
tasks.

D. Equations

• Given an input state vector s ∈ Rn, where n is the state
size (32 in this case), the forward pass through the neural
network can be expressed as:
1. First layer transformation:

h1 = ReLU(W1s+ b1)

where W1 ∈ R64×n is the weight matrix, b1 ∈ R64 is the
bias vector, and ReLU is the activation function defined
as:

ReLU(x) = max(0, x)

2. Second layer transformation:

h2 = ReLU(W2h1 + b2)

where W2 ∈ R64×64 and b2 ∈ R64.
3. Output layer:

Q(s, a) = W3h2 + b3

where W3 ∈ Rm×64, b3 ∈ Rm, and m is the number of
actions (3 in this case). The output Q(s, a) represents the
Q-values for each action a.

a+ b = γ (1)

• The epsilon-greedy policy for selecting an action a given
a state s is defined as:

a =

{
random action with probability ϵ

argmaxa Q(s, a) with probability 1− ϵ

• The reward function based on the Mean Absolute Error
(MAE) between the transformed state s′ and the expected
output y is:
1. Calculate MAE:

MAE(s′, y) =
1

n

n∑
i=1

|s′i − yi|

2. Reward:

r = −MAE(s′, y)

IV. RESULT

The RL agent demonstrated promising results, achieving a
significant success rate on a subset of ARC tasks.

Fig. 3: Performance of the agent result the left one is for the loss
and the right shows reward obtained per episode

The two graphs present the training performance of a Deep
Q-Network (DQN) model tested on the 1D ARC task. The
first graph on the left illustrates the loss function over the
training steps. Initially, the loss is high, indicating large errors
between predicted and target Q-values. However, the loss
rapidly decreases and stabilizes, showing that the model is
learning effectively and making more accurate predictions as
training progresses. The second graph on the right shows
the total reward obtained per episode. There is significant
variability in the rewards, particularly early in the training
process, which reflects the exploration phase of the epsilon-
greedy policy. Over time, the rewards show some stabilization,
although occasional drops suggest the model sometimes per-
forms suboptimally, indicating room for further optimization
and fine-tuning.

V. CONCLUSION

Reinforcement Learning offers a viable approach to solving
the ARC tasks, with the potential to advance AI’s generaliza-
tion capabilities. Future work will focus on refining the rule
representation and exploring more sophisticated RL algorithms
to further enhance performance

REFERENCES

[1] Chollet, François. ”On the measure of intelligence.” arXiv preprint
arXiv:1911.01547 (2019).

[2] Xu, Yudong, et al. ”Llms and the abstraction and reasoning corpus:
Successes, failures, and the importance of object-based representations.”
arXiv preprint arXiv:2305.18354 (2023).

[3] Li, Yuxi. ”Deep reinforcement learning: An overview.” arXiv preprint
arXiv:1701.07274 (2017).

[4] Wiering, Marco A., and Martijn Van Otterlo. ”Reinforcement learning.”
Adaptation, learning, and optimization 12.3 (2012): 729.

[5] Jang, Beakcheol, et al. ”Q-learning algorithms: A comprehensive clas-
sification and applications.” IEEE access 7 (2019): 133653-133667.

[6] Di Pasquale, Ricardo, and Javier Marenco. ”Optimization meets Big
Data: A survey.” arXiv preprint arXiv:2102.01832 (2021).

[7] Tan, John Chong Min, and Mehul Motani. ”Large Language Model
(LLM) as a System of Multiple Expert Agents: An Approach to solve
the Abstraction and Reasoning Corpus (ARC) Challenge.” arXiv preprint
arXiv:2310.05146 (2023).

